Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 6 de 6
Filtre
Ajouter des filtres

Type de document
Gamme d'année
1.
biorxiv; 2021.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2021.08.12.456168

Résumé

The trimeric spike (S) glycoprotein, which protrudes from the SARS-CoV-2 viral envelope, is responsible for binding to human ACE2 receptors. The binding process is initiated when the receptor binding domain (RBD) of at least one protomer switches from a "down" (closed) to an "up" (open) state. Here, we used molecular dynamics simulations and two-dimensional replica exchange umbrella sampling calculations to investigate the transition between the two S-protein conformations with and without glycosylation. We show that the glycosylated spike has a higher barrier to opening than the non-glycosylated one with comparable populations of the down and up states. In contrast, we observed that the up conformation is favored without glycans. Analysis of the S-protein opening pathway reveals that glycans at N165 and N122 interfere with hydrogen bonds between the RBD and the N-terminal domain in the up state. We also identify roles for glycans at N165 and N343 in stabilizing the down and up states. Finally we estimate how epitope exposure for several known antibodies changes along the opening path. We find that the epitope of the BD-368-2 antibody remains exposed irrespective of the S-protein conformation, explaining the high efficacy of this antibody. Graphical TOC Entry O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=81 SRC="FIGDIR/small/456168v1_ufig1.gif" ALT="Figure 1"> View larger version (28K): org.highwire.dtl.DTLVardef@1fcc0a5org.highwire.dtl.DTLVardef@cb97cforg.highwire.dtl.DTLVardef@5bbe6corg.highwire.dtl.DTLVardef@132ca97_HPS_FORMAT_FIGEXP M_FIG C_FIG

2.
biorxiv; 2021.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2021.04.29.442038

Résumé

We report a distinct difference in the interactions of the glycans of the host-cell receptor, ACE2, with SARS-CoV-2 and SARS-CoV S-protein receptor-binding domains (RBDs). Our analysis demonstrates that the ACE2 glycan at N90 may offer protection against infections of both coronaviruses, while the ACE2 glycan at N322 enhances interactions with the SARS-CoV-2 RBD. The interactions of the ACE2 glycan at N322 with SARS-CoV RBD are blocked by the presence of the RBD glycan at N357 of the SARS-CoV RBD. The absence of this glycosylation site on SARS-CoV-2 RBD may enhance its binding with ACE2.


Sujets)
Syndrome respiratoire aigu sévère
3.
biorxiv; 2021.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2021.03.19.436231

Résumé

Both SARS-CoV and SARS-CoV-2 bind to the human ACE2 receptor. Based on high-resolution structures, the two viruses bind in practically identical conformations, although several residues of the receptor-binding domain (RBD) differ between them. Here we have used molecular dynamics (MD) simulations, machine learning (ML), and free energy perturbation (FEP) calculations to elucidate the differences in RBD binding by the two viruses. Although only subtle differences were observed from the initial MD simulations of the two RBD-ACE2 complexes, ML identified the individual residues with the most distinctive ACE2 interactions, many of which have been highlighted in previous experimental studies. FEP calculations quantified the corresponding differences in binding free energies to ACE2, and examination of MD trajectories provided structural explanations for these differences. Lastly, the energetics of emerging SARS-CoV-2 mutations were studied, showing that the affinity of the RBD for ACE2 is increased by N501Y and E484K mutations but is slightly decreased by K417N.

4.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.09.10.288548

Résumé

SARS-CoV-2, the agent responsible for COVID-19 has been shown to infect a number of species. The role of domestic livestock and the risk associated for humans in close contact remains unknown for many production animals. Determination of the susceptibility of pigs to SARS-CoV-2 is critical towards a One Health approach to manage the potential risk of zoonotic transmission. Here, we show pigs are susceptible to SARS-CoV-2 following oronasal inoculation. Viral RNA was detected in group oral fluids and nasal wash from at least two animals while live virus was isolated from a pig. Further, antibodies could be detected in two animals at 11 and 13 days post infection, while oral fluid samples at 6 days post inoculation indicated the presence of secreted antibodies. These data highlight the need for additional livestock assessment to determine the potential role domestic animals may contribute towards the SARS-CoV-2 pandemic.


Sujets)
COVID-19 , Infections
5.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.09.07.286344

Résumé

The main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an attractive target for antiviral therapeutics. Recently, many high-resolution apo and inhibitor-bound structures of Mpro, a cysteine protease, have been determined, facilitating structure-based drug design. Mpro plays a central role in the viral life cycle by catalyzing the cleavage of SARS-CoV-2 polyproteins. In addition to the catalytic dyad His41-Cys145, Mpro contains multiple histidines including His163, His164, and His172. The protonation states of these histidines and the catalytic nu-cleophile Cys145 have been debated in previous studies of SARS-CoV Mpro, but have yet to be investigated for SARS-CoV-2. In this work we have used molecular dynamics simulations to determine the structural stability of SARS-CoV-2 Mpro as a function of the protonation assignments for these residues. We simulated both the apo and inhibitor-bound enzyme and found that the conformational stability of the binding site, bound inhibitors, and the hydrogen bond networks of Mpro are highly sensitive to these assignments. Additionally, the two inhibitors studied, the peptidomimetic N3 and an -ketoamide, display distinct His41/His164 protonation-state-dependent stabilities. While the apo and the N3-bound systems favored N{delta} (HD) and N{epsilon} (HE) protonation of His41 and His164, respectively, the -ketoamide was not stably bound in this state. Our results illustrate the importance of using appropriate histidine protonation states to accurately model the structure and dynamics of SARS-CoV-2 Mpro in both the apo and inhibitor-bound states, a necessary prerequisite for drug-design efforts.

6.
chemrxiv; 2020.
Preprint Dans Anglais | PREPRINT-CHEMRXIV | ID: ppzbmed-10.26434.chemrxiv.12725465.v1

Résumé

We present a supercomputer-driven pipeline for in-silico drug discovery using enhanced sampling molecular dynamics (MD) and ensemble docking. We also describe preliminary results obtained for 23 systems involving eight protein targets of the proteome of SARS CoV-2. THe MD performed is temperature replica-exchange enhanced sampling, making use of the massively parallel supercomputing on the SUMMIT supercomputer at Oak Ridge National Laboratory, with which more than 1ms of enhanced sampling MD can be generated per day. We have ensemble docked repurposing databases to ten configurations of each of the 23 SARS CoV-2 systems using AutoDock Vina. We also demonstrate that using Autodock-GPU on SUMMIT, it is possible to perform exhaustive docking of one billion compounds in under 24 hours. Finally, we discuss preliminary results and planned improvements to the pipeline, including the use of quantum mechanical (QM), machine learning, and AI methods to cluster MD trajectories and rescore docking poses.


Sujets)
COVID-19 , Maladies génétiques congénitales
SÉLECTION CITATIONS
Détails de la recherche